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Abstract — The article describesthe classificationof simple
movementsusing a systembasedon Hidden Mark ov Mod-
els (HMM). Brisk extensionsand flexions of the index fin-
ger, and movementsof the proximal arm (shoulder) and
distal arm (finger) were classifiedusing scalp EEG signals.
The aim of our study wasto develop a systemfor the classi-
fication of movementswhich show EEG changesat identi-
cal scalpelectrodesof onehemisphere. The classificationof
EEG patternsrelatedto movementsof onehand is difficult
becausehe disentanglementof movementscanonly rely on
the temporal evolution of EEG changesat one recording
site. A largevariability of EEG waveforms requiresthe use
of the contextinformation.

The classification procedure was optimized in all parts
to increasethe recognition score and it was extensiely
tested on a set of EEG data. The average classification
score was 80%, std. deviation 9% for the classification of
distal and proximal movements.

The classificationof extension/flexionreachedeven bet-
ter results(due to more accurate localization of the signal
sourceon the scalp). The classificationof movement-related
EEG databasedon HMM yielded higher recognitionscores
than previously reported classificationscoresbasedon arti-
ficial neural networks (NaN).

Keywords — Spectralanalysis,Hidden Markov models,HTK,
EEGclassificationEEG synchronization

|. INTRODUCTION

The aim of our work was to develop, analyze,optimize
andverify a HMM systemfor the classificationof character
istic shapesof EEG signals. The key requirementbuilt into
the classificationsystemwasto usechangesn signalparame-
tersratherthaninformationaboutthe electrodepositionon the
scalp. Successfutlassificationof movement-relatedEG sig-
nalsis a pre-requisitefor on-line classificationof movement-
relatedEEG datawhich canbe utilized in driving of external
devices,e.g.the Brain-Computeinterface(see[1]).

Theclassificatiorof EEGsignalssharesimilarcharacteris-
ticswith speeclelassification-e.g.theuseof thecontet infor-
mationcontainedn the signal. Due to smallersignalvariabil-
ity, speectltlassificatioris morestraightforvardthanthe EEG
classification. EEG signalsalso showv large inter-individual
variability precludingextrapolationof EEG classificatiorfrom
one subjectsto the whole sample. Here we appliedthe clas-
sification methodsoriginally developedin the recognitionof
speechpatternsto the EEG signalsand thuswe were ableto
improvetheindividual recognitionscores.

Thefirst stepin theclassificatiorof movement-relate€EEG
datawasto chooseasuitableclassificatiorparadigmaWe have

tried to fulfill thefollowing conditions:

1. theability to usecontext for recognition,

2. the possibility of finding out “what doesthe system
learn”,

3. thereductionof thenumberof arithmeticoperations.

Condition1 is essentiafor reachinga satishctory recog-
nition score. The EEG signalsdisplay a context information
andpreviousstudypointedto theimportanceof the context in-
formationin EEG classification(see[2]). Condition2 highly
facilitatesdehuggingandtestingof the system.The third con-
dition is of technologicabndpracticalimportance.

Theseconditionsseemdo be satisfiedusingthe approach
basedon HMM ratherthanNaN becausef the following rea-
sons:

e it is difficult to obtainmappingusingNaN,

¢ NaN requiresubstantiallymorenumericoperationgdur-
ing thelearningphaseghanHMM,

¢ HMM allow to modelthe shapeof EEGsignals,

e HMM allow a straightforward useof the context infor-
mation.

The above characteristicof HMM give a reliablerecognition
of speechpatterns[3],[4]. The HMM hasbeenappliedre-

cently to recognitionof EEG patternsrelatedto left andright

handmovementd5]. In contrasto the study[5], HMM in our

study wasimplementedo classify movementsshoving EEG

changestidenticalscalpelectrode®f onehemisphereThere-
fore the classificatiorof EEG patterngelatedto movementof

onehandis moredifficult comparedo classificatiorof move-

mentsrelatedto two handg(left vs. right) becaus¢hedisentan-
glementof movementsanonly rely onthetemporalevolution

of EEG changesat onerecordingsite (or in theworstcase- at

oneelectrodeonly).

Il1. PROPERTIES OF EEG SIGNAL

Prior to the classificationsystemis designedthe analysis
of EEGsignalcharacteristichasto be performed.

A. THE SELECTION OF ELECTRODE

SinceEEGchangesn both,time andspacetheselectiorof
appropriateEEG electroderepresentingnovementis a crucial
pointfor a successfutlassificatiorof movements.

Sincemovementsarecontrolledprimarily by the contralat-
eral sensorimotorortex, the suitableelectrodearethoseover
lying the contralaterakensorimotohandarea(electrodeC3).
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We have testedvariouselectrodesandcameto the conclusion,
asexpectedthatthe selectionof electrodenasa seriousmpact
ontherecognitionscore(see[6] for moredetails).

B. SPECTRAL ANALYSIS

The major differencesn EEG databetweentwo typesof
movementscan be obsened from the time courseof spectral
parameters. The changesof spectrumaccompayging move-
mentarelocalizedto the10-23Hz band.Theaccurateselection
of bandis an individual task. To minimize the faulty choice,
initially a broadband(0-40 Hz) bandwith removed DC com-
ponentfor classification*baseband”wasused.

Onecanseetwo characteristiphenomenan the spectro-
gramaroundthetime of amovement(se€g[7]):

synchronization : post-maementiseof spectrapower. Syn-
chronizationis usuallygreaterin proximalthanin distal
movementgseeFig. 2 andFig. 1 — comparehecurve p
with curved in theinterval lll).

desynchmonization : decreaseof power aroundthe time of
movementonset(seeinterval Il — Fig. 1). Desynchro-
nizationis strongetin distalthanin proximalmovements.

Figurel illustratesan exampleof thetime developmentof
the averagemagnitudespectrumof both movementsfor one
subjectandelectrode.The spectrumis normalized thatis the
amplitudeof eachspectralline is basedo the averagemagni-
tude of the samespectralline computedfrom the segmentsl
- 15. To be more precise:let X[[i] is the spectralline from
segmentk (frequeng i Hz) of motion p, thenthe appropriate
valueY}? (depictedon thefigure)is computedas
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C. SELECTION OF PARAMETRIZATION

Theresultsof spectralanalysisrevealedthatthe useof lin-
earspectrunis the mostappropriatdor HMM. Otherparame-
ters(e.g. cepstralcoeficientsor log-spectrayerealsotested
but theseparametersverefoundto belesssuitablefor theEEG
classification.

Thepresensystenmusesastheinputparameterthespectral
lines of linear magnitudespectruntakenfrom bandl - 40 Hz
without normalizationusedfor Fig. 1. The reasonis thatin
the real applicationst is not possibleto recognizethe resting
periodshetweersubsequernnovementsOurtestsalsoshaved
that a successfutlassificationis not sensitve to the selection
of particularspectralines. It is only importantto detectaclear
synchronizatiorand desynchronizationin the selectedbands.
Higherfrequeny bands(above 50 Hz) arenotusedsincethese
bandsshoved poor signal-to-noiseatio.

I1l. PARAMETERS OF HMM BASED MODELS
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Figurel: Persord, electrode25, 10-23Hz band. Horizontal
line marksthe momentof movement,desynchronizatiorcan
be found roundthe movement,after the movementis obvious
synchronization.The shapeof proximal movementis “p”, “d”
is for distalone.

Since we classify two types of movements,two models
shouldbe used- onefor the distal, andthe otherfor the prox-
imal movement. The EEG epochscorrespondingo the real-
izationsof movementsarestoredin separatdiles. Thisway is
very similar to isolatedwords recognitionproblem. The pro-
posedgrammarof the systemis distal or proximal.

During the selectionof thetype of model,thetime courses
of EEG synchronizatioranddesynchronizatioshavn in Fig.
1 arerelevant. Thewholetime evolution of the EEG spectrum
canbedividedinto four phasessdepictedin Fig. 1. Phasd
andlV aretherestingperiodsprecedingandfollowing amove-
ment,respectiely. Phasdl is the desynchronization]l is the
synchronization.Phasedollow in the order!l — Il = Ill =1V,
noneof themcanbeskipped.Also this situationis very similar
to speectrecognition. As the bestit appeargo usethe model
of type “left-right without skips”, 4 emitting states. It is sup-
posedthat eachstate1-4 is trainedto the averagemagnitude
spectruncorrespondingo phased — IV.

In Fig. 3 the meanvaluesof outputdistributions of the
model statesare shavn. In states2 and 3, a decreasingand
subsequerihcreasingf spectrapower (in theband10-20Hz)
is evident.

The resultsshowved also a large variability of individual
spectralchanges. The standarddeviation of spectrallines is
typically higherthantheir meanvalues.The averageshape®f
spectralchangesiepictedin Figs. 1 and3 fit to the prevailing
numberof subjectq[6]).

IV. DETAILS OF PARAMETRIZATION

In the phaseof parametrizationthe following parameters
shouldbe optimized: sggmentationlength, segmentationstep,
weightingof signalseggmentby anappropriateveightingfunc-
tion, the type of stochastiadistribution of spectrallines. For
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Figure2: Persom, electrode25, the time developmentof the
magnitudespectrum Depictedis thebasebandHorizontalline
marksthe time of movement,you can seedesynchronization
roundthe movementandsynchronizatiorafterthe movement.
Horizontallinesemphasizd 0-23Hzband.

eachparameteran optimal valuewhich maximizesthe classi-
fication scorecanbe found. Now we will give anoverview of
theseoptimalparameters.

A. SIGNAL SEGMENTATION

For a reliable EEG signal classification,it is necessaryo
find acompromisebetweerthe frequeny andtime resolution.
The unsuitableselectionof one of theseparametersesultsin
decreasin@f therecognitionscore.

Available frequeng and time resolution is determined
by the sggmentlength. Time resolutionis necessanfor the
properrecognizingof statesl — IV. Low frequeng resolution
decreaseshe recognitionscorebecauseandividual statesare
not recognizeddueto big spectralbias. The optimal sggment
lengthwasfoundto be 1 sthatcorresponds$o 512 sampledor
samplingfrequeny f; = 500 Hz.

The spectralwindow is shiftedthroughthe EEG epochsn
shortintervals,thuswith alargetemporaloverlap.In our study
the overlapof 800 ms (400 samplespave the bestrecognition
scores. Thus, the resultingfrequeng resolutionis 1 Hz and
the time resolution(window shift) is 200 ms. Theseresults
correspondo theresultsgivenin [7].

B. WEIGHTING OF SPECTRUM

The influenceof spectralleakageon the recognitionscore
wasfoundto benggligible (see[6]).

C. SPECTRAL LINES DISTRIBUTION

The proposedsystenworkswith the signalswith normally
distributed parameters. However, the amplitudesof spectral
lines usually shov a logarithmic-normaldistribution. Using

the x? test, we testedthe distribution of our spectralparame-
ters. Theresultsshoved (se€[6]), thatthedistribution of mag-
nitudesof spectralines canbe well approximatedy boththe

normal and logarithmic-normaldistributions. We performed
severalexperimentswith thecorversionof thespectraparame-
tersfrom thelogarithmic-normatlistributionto thenormaldis-

tribution. However, the resultswere equivalentfor bothtypes
of distributions.

D. MODEL PARAMETERS ESTIMATION

Theinfluenceof thenumberof Baum-Welchre-estimations
[8] on the classificationscorewas also studied. The optimal
numberof iterationsis strongly influencedby the variability
of EEG dataand, of course,by the numberof data. The best
resultsfor the setof dataused(seesection’Experimentsand
results”) were achieved with ten Baum-Welch iterations. A
smallernumberof iterationshave not trainedthe modelssuf-
ficiently, anda large numberof iterations(greaterthan 10) re-
sultedin “overtrained”models.

E. THE PROCESS OF EVALUATING THE RESULTS

Classificatioris acomplicatedstatisticprocess Theresults
of experimentsaareat mostinfluencedby

1. signalparameterandusedparametrization,

2. the division of realizationshetweentestingandtraining
set.

Thetestingandtraining setsrepresentlisjoint classes.There-
fore, it is essentiato repeatachexperimentwith differentpar
titioning of realizationsbetweenboth setsandto evaluatethe
recognitionscoresstatistically

A system for automatic partitioning the realizations
betweentraining and testing setswas implemented. Every
experiment was repeated 10-times and the appropriate
statisticalcriteriawereevaluated.

V. EXPERIMENTS AND RESULTS

Parametersof the systemwere optimized and the whole
systemwasextensiely testedin numerousexperiments.Here
we presenthetypical parametersf the systemandtheresults
of classificationlmoredetailscanbefoundin [6]).

Parameterization: segmentof 512 sampleslength, overlap
400samplesdatarecordedrom electrodeC3, 7 experi-
mentalpersonseveryvectorcontains40 parameter¢4 —
44Hz,stepl Hz), 1 streamnonedifferentialparameters.

Training: modelstrainedon onehalf of datafrom a relevant
subject, the secondhalf was usedfor evaluating the
recognitionscore. Usedleft-right modelwithout skips,
four emitting states. 10 stepsof initialization, 10 steps
of Baum-Welchreestimation.
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Figure3: Meansof stateoutputdistribution of model. You can
compareghemwith the correspondingphase®on Fig. 1 — state
1 correspondsvith phasd, state2 with phasdl, 3 with lll a4
with V.

Classification: classificationvasdoneby meanof Viterbi al-
gorithm. Eachexperimentwasten timesrepeatedwith
its own division of realizationbetweertrainingandtest-
ing setstheresultantlassificatiorscorewastheaverage
of the scoresfrom eachrepetition. Also the standardie-
viationsfor classificatiorscoresvereevaluated.

Results: the averageclassificationscorefor distal movement
(extension-fleion of rightindex figner) - 80%, for prox-
imal movement(right shoulder) 76%. In bothcaseghe
standardieviationsof recognitionscoreareabout9%.

VI. CONCLUSIONS

Theclassificatiorof movement-related EG databasedon
the HMM is a feasiblealternatve to NaN. The problemof an
optimal electrodeusedfor classifications a problemcommon
totheHMM andNaN approachesAnotherproblemisthelarge
intra- andinter-individual variability of EEG data. Therefore,
the classificatiorof modelscannotbe straightforvardly gener
alizedto thewhole populationof subjects.The suggestedys-
temis ableto recognizeonly the movement-relatedEEG data
which were usedfor training. The low capacityof the EEG
modelsis the reasonthat no generalizatiorof modelscanbe
achieved. In this pointthe usedapproachdiffersfrom the clas-
sificationof speectpatternsfor which a “spealerindependent
classification”is possible.The usingof the EEG classification
modelsfor more differentmovementsand for more thanone
subjecis ataskfor thefuture. Thenext studywill beperformed
onalargerdatabasef EEGsignalsandfor moredifferenttypes
of movements.
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